SIMULASI PENGATURAN LAMPU LALULINTAS
BERDASARKAN LOGIKA FUZZY MENGGUNAKAN
BORLAND DELPHI 7.0

Nur Ani, Achmad Kodar, Jemala Indahdin

ABSTRAK

Kata Kunci — Lampu Lalulintas, Sensor, Logika Fuzzy.

I. LATAR BELAKANG
Lalulintas yang teratur merupakan harapan dari semua pengguna jalan raya. Seiring dengan pertambahan penduduk dan pengguna jalan raya maka tingkat kepadatan pengguna jalan raya tidak dapat dihindari khususnya di persimpangan jalan. Selama ini sistem pengaturan lampu lalulintas menggunakan pengaturan yang hanya berdasarkan waktu pada waktu tetap yaitu lama waktu yang sudah di tentukan pada setiap lampu lalulintas untuk menyala tanpa memperhatikan tingkat kepadatan lalulintas yang ada.

Sistem pengendalian lampu lalulintas yang baik akan secara otomatis menyusaiakan diri dengan kepadatan arus lalulintas pada jalur yang diatur. Dengan penerapan sistem pengendalian fuzzy yaitu sistem yang mempunyai dua masukan dan satu keluaran. Masukan adalah jumlah kendaraan pada suatu jalur yang sedang diatur dan jumlah kendaraan pada jalur lain, dan keluaran berupa lama nyala lampu hijau pada jalur masukan satu. Penggunaan dua masukan dimaksudkan supaya sistem tidak hanya memperhatikan sebaran kendaraan pada jalur yang sedang diatur saja, tetapi juga memperhitungkan kondisi jalur yang lain.

Sistem pengaturan lampu lalulintas yang dirancang ini, juga mempertimbangkan masukan interupsi sehingga pengaturan lampu lalulintas yang sedang berjalan akan dihentikan sementara untuk melayani jalur yang menyal. Fasilitas ini digunakan untuk keadaan darurat, mendesak, misalnya seperti pelayanan mobil emegency atau mobil ambulance. Jika lebih dari satu jalur memberi interupsi, maka yang dilayani adalah tersebut yang pertama menekan tombol interupsi itu.

II. TUJUAN PENELITIAN
Tujuan penelitian ini adalah pembuatan aplikasi untuk melakukan pengaturan lampu lalulintas menyala hijau dan merah secara otomatis berdasarkan jumlah kendaraan.

Memahami pengaksesan port paralel (data, kontrol, dan status) pada Borland Delphi 7.0.

Membuat aplikasi yang berguna untuk kelancaran lalulintas, terutama di persimpangan jalan yang menggunakan lampu lalulintas.

III. BATASAN MASALAH
Batasan-batasan masalah yang ditampilkan adalah sebagai berikut:
1. Aplikasi sistem pengaturan lampu lalulintas ini berdasarkan metode fuzzy menggunakan Borland Delphi 7.0.

IV. METODA PENELITIAN
Untuk menyesuaikan laporan penelitian, penulis menggunakan beberapa metoda penelitian yaitu:
1. Metode keputusakan dengan mengumpulkan dan mencari bahan-bahan yang diperlukan dalam penyusunan penelitian ini dengan mempelajari buku-buku penunjang yang berhubungan dengan permasalahan yang dibahas dalam penelitian ini.

2. Metode Perancangan
Melakukan penelitian dengan cara melakukan analisis, perancangan, pembuatan aplikasi pengaturan lampu lalulintas berdasarkan logika fuzzy menggunakan Borland Delphi 7.0, dan melakukan pengujian program yang telah di buat. Metode yang di gunakan adalah metode waterfall.

3. Literatur dari Internet dengan melakukan browsing internet untuk mencari bahan-bahan yang diperlukan untuk mempermudah penulis dalam menyelesaikan penelitian dan mengembangkan aplikasi deteksi lokasi SPBU sepanjang jalan Pantura berbasis SMS.

V. ANALISIS DAN PEMODELAN
Simulasi pengaturan lampu lalulintas ini menggabungkan antara perangkat keras yang berupa rangkaian elektronik dengan sebuah komputer. Cara kerja aplikasi ini adalah mengatur lampu waktu lampu lalulintas menyalakan dengan menerapkan logika fuzzy pada program. Dimana dua jalan merupakan jalan satu arah dan dua jalur merupakan jalan dua arah, setelah logika fuzzy diterapkan, maka sensor pada perangkat elektronik akan membagi waktu secara otomatis untuk menentukan lampu nyala lampu berdasarkan jumlah kendaraan. Pembagian waktu secara otomatis ini berdasarkan pembacaan sensor terhadap banyaknya kendaraan yang lewat pada masing masing jalan. Cara kerja aplikasi ini juga dapat dilakukan secara manual dengan memasukan lampu waktu pada setiap lampu lalulintas, dan melakukan proses interupsi, yaitu penghentian sementara pada jalan yang sedang berjalan untuk melayani jalan yang di interupsi. Cara kerja sensor adalah dengan melakukan identifikasi kendaraan pada ban depan kendaraan sampai dengan ban belakang kendaraan, jika kendaraan yang lewat menggunakan as roda lebih dari dua maka sensor akan mengidentifikasi menjadi dua kendaraan yang lewat.

Pada gambar 1.1 adalah alur kerja dari aplikasi pengaturan lampu lalulintas berdasarkan logika fuzzy menggunakan delphi 7.0, di mana power supply yang menghasilkan arus listrik masuk ke dalam sebuah rangkaian elektronik, setelah rangkaian elektronik mendapatkan arus listrik kemudian rangkaian tersebut mengirimkan sinyal digital ke komputer menandakan bahwa rangkaian tersebut siap untuk di kontrol oleh komputer. Setelah operator menjalankan aplikasi tersebut dalam komputer, komputer mengirimkan sinyal digital ke rangkaian elektronik tersebut. Setelah rangkaian tersebut menerima sinyal dari komputer rangkaian itu bekerja untuk menjalankan pengaturan lampu waktu lampu lalulintas menyala sesuai jumlah kendaraan pada setiap jalan melalui pembacaan sensor setelah memberikan ketentuan pada lampu lalu lintas dan memberikan masukan pada aplikasi (komputer).

Gambar 1 Alur Kerja Aplikasi

Untuk menghubungkan rangkaian elektronik dengan komputer dibutuhkan sebuah media. Media itu adalah sebuah gerbang paralel (port parallel) atau gerbang pencetak (port printer), yang biasa digunakan untuk menghubungkan sebuah komputer dengan pencetak (printer). Pada aplikasi ini port paralel yang di gunakan tidak sebagai pencetak (printer) tapi merupakan media masukan (input) dan keluaran (output) dari komputer ke rangkaian elektronik dan sebaliknya.

Pemodelan Logika dengan Use Case Diagram

Gambar 2 Use Case Pengaturan Lampu Lalulintas

Dari diagram use case di atas dapat dijelaskan lagi dari ilustrasi skenario per use case sebagai berikut:
1. Nama use case: set timer secara otomatis
Aktor: Timer
Deskripsi:
Kegiatan untuk set timer secara otomatis pada aplikasi pengaturan lampu lalulintas, yaitu:
Menjalankan aplikasi dan mengaktifkan pengaturan secara otomatis untuk memberikan pengaturan lama waktu menyala pada setiap lampu lalulintas sesuai dengan masukan sensor.

Skenario:
Mengaktifkan pengaturan secara otomatis dan sensor akan bekerja membagi total waktu lampu lalulintas menyala ke setiap jalur sesuai dengan jumlah kendaraan di setiap jalur.

2. Nama use case: Set timer secara manual
Aktor: Timer
Deskripsi:
Kegiatan untuk set timer secara manual pada aplikasi pengaturan lampu lalulintas, terdiri atas proses masukan data yaitu:
b. Memasukan waktu pada setiap lampu lalulintas.

Exception (pengeceuan): Memasukkan waktu harus sesuai dengan format yang ada bila tidak, maka proses tidak akan berjalan.

Skenario:
b. Memasukan waktu sesuai format yang ada.

Postcondition (kondisi akhir): lampu menyala sesuai dengan lama total waktu yang dimasukan.

3. Nama use case: Interupsi
Aktor: Timer
Deskripsi:
Kegiatan untuk melakukan interupsi pada aplikasi pengaturan lampu lalulintas, yaitu : Menjalankan simulasi dan mengaktifkan pengaturan interupsi untuk memberikan interupsi pada jalur yang di inginkan.

Skenario:
Mengaktifkan pengaturan interupsi untuk memberikan interupsi pada jalur yang di inginkan.

Femodelan menggunakan Logika Fuzzy
Beberapa istilah yang digunakan dalam pengendalian lampu lalulintas untuk sebaran kendaraan adalah:
- Cukup Padat (CP)
- Padat (P)
- Sangat Padat (SP)

sedangkan untuk lama nyala lampu lalu lintas adalah:
- Cepat (C)
- Agak Cepat (AC)
- Sedang (S)
- Agak Lama (AL)
- Lama (L)

Sistem pengendalian fuzzy yang dirancang mempunyai dua masukan dan satu keluaran. Masukan adalah jumlah kendaraan pada suatu jalur yang sedang diatur dan jumlah kendaraan pada jalur lain, dan keluaran berupa lama nyala lampu hijau pada jalur yang sedang diatur. Penggunaan dua masukan dimaksudkan supaya sistem tidak hanya memperhatikan sebaran kendaraan pada jalur yang sedang diatur saja, tetapi juga memperhitungkan kondisi jalur yang sedang menunggu.

Penciptaan dilakukan pada setiap putaran (lewat sensor yang telah dipasang). Satu putaran dianggap selesai apabila semua jalur telah mendapat pelayanan lampu.

Masukan berupa himpunan kepadatan kendaraan oleh logika fuzzy diubah menjadi fungsi keanggotaan masukan, dan fungsi keanggotaan keluaran (lama nyala lampu hijau). Bentuk fungsi keanggotaan dapat diatur sesuai dengan distribusi data kendaraan. Kaidah-kaidah yang akan digunakan untuk mengatur lalulintas ditulis secara subjektif dalam fuzzy associative memory (FAM).

| Tabel 1 Fuzzy Associative Memory untuk kepadatan lalulintas |
|-----------------|---|---|---|---|---|
| M+1 | TP | KP | CP | P | SP |
| TP | AC | AL | S | AC | C |
| KP | S | AL | S | AC | AC |
| CP | AL | AL | S | AC | AC |
| P | L | AL | S | AC | AC |
| SP | L | AL | AL | S | S |

*Masukan 1 adalah jumlah kendaraan pada jalur yang diatur.
Masukan 2 adalah jumlah kendaraan pada jalur lain.

Grafik range pada logika fuzzy
Untuk menentukan lama nyala lampu hijau dan merah pada jalur satu dan jalur dua berdasarkan kepadatan kendaraan pada aplikasi pengaturan lampu lalulintas berdasarkan logika fuzzy menggunakan Delphi 7.0, penulis membuat grafik seperti terlihat pada gambar 3.

Tahapan logika fuzzy
Untuk mencari hasil keluaran pada logika fuzzy di perlu tahapan tahapan sebagai berikut pada gambar 4.
Crisp input adalah masukan real menggunakan satuan kendaraan/ menit, fuzzifikasi adalah banyaknya jumlah kendaraan yang lewat dalam satuan persen dan di kategorikan pada rule evaluation, defuzzifikasi adalah
hasil keluaran dari masukan satu dan masukan dua, crisp output dalam hasil dari defuzzifikasi dalam satuan detik (nyala lampu hijau).

Gambar 3 Grafik Logika Fuzzy

(Pendekatan Jalan 1)

Gambar 4 Grafik Logika Fuzzy

Pada penghitungan di sini, penulis menggunakan metode midle of maxima dari logika fuzzy. Adalah mengambil nilai rata rata persentase kepadatan pada dua jalan masukan. Dengan rumus $a + b / 2$ (masukan satu dan masukan dua), untuk jumlah kepadatan jalan satu dan jalan dua menggunakan satuan kendaraan/ menit (kend/mnt). Dengan menggunakan rumus $60 / \text{waktu jalan} \times \text{kepadatan jalan}$ (jumlah kendaraan yang lewat).

Pemodelan logika dengan Diagram Alur

Alur logika dari aplikasi pengaturan lampu lalu lintas ini dapat dilihat dari flowchart yang dibuat Penulis. Pemaparan dari flowchart dapat dilihat pada gambar 5.

Gambar 5 Diagram alur aplikasi Lampu lalu lintas

Pada saat operator mengaktifkan aplikasi ini, maka operator akan mengisi password yang sesuai, untuk dapat masuk pada program pengaturan lampu lalu lintas. Pada program ini operator dapat memilih tiga proses pengaturan lampu lalu lintas, yang pertama adalah

VI. IMPLEMENTASI DAN PENGUJIAN SIMULASI

Simulasi pengaturan lampu lalu lintas adalah program yang digunakan untuk melakukan pengaturan lampu lalu lintas berdasarkan masukan jumlah kendaraan yang lewat pada jalur satu dan jalur dua. Program ini memerlukan sebuah alat berupa miniatur perempatan jalan yang di hubungkan ke aplikasi pengaturan lampu lalu lintas menggunakan port paralel untuk menjalankannya.

Gambar 5 Miniatur Perempatan jalan

Gambar 6 Antarmuka Simulasi

Untuk menjalankan form di atas di butuhkan koneksi antara program dengan miniatur perempatan lampu lalu lintas (alat) dengan menggunakan prot paralel. Kode program 1 berfungsi untuk memanggil alamat pada port paralel (LPT1) yaitu data, control, dan status.

Kode 1 koneksi dengan alat

```pascal
procedure TForm_Simulasi.inisialisasitimer(Sender: TObject);
begin
  //Parameter keluaran/
  out32 ($37a, inp32($37a) and $fe);
  STATUS:=INP32 ($379);
  out32 ($378, lampu);
end;
```

Kode program 2 merupakan masukan dari alat ke program, jika status di AND kan dengan 40 hexadecimal sama dengan 40 hexadecimal maka s1 (sensor 1) berwarna merah (aktif), jika tidak s1 berwarna putih (tidak aktif). Untuk sensor 2 (s2) jika status di AND kan dengan 80 hexadecimal sama dengan 00 hexadecimal.
maka s2 (sensor 2) berwarna merah (aktif), jika tidak s2 berwarna putih (tidak aktif).

Kode 2 Koneksi dengan sensor

```delphi
//Parameter masukan sensor jalur
IF STATUS AND $40=$40 THEN
S1.Color:=CLEARED ELSE
S1.Color:=CLWHITE;
IF STATUS AND $80=$80 THEN
S2.Color:=CLEARED ELSE
S2.Color:=CLWHITE;
```

Kode program 3 untuk mengidentifikasi kepadatan jalur satu dan jalur dua dengan menggunakan sensor, jika h1 berwarna hijau maka s1 berwarna merah maka s1 (sensor jalur 1) sama dengan 1, jika s1 sama dengan 1 berwarna putih, maka j1 (jalur 1) sama dengan j1+1. Begitu juga untuk kode program jalur dua.

Kode 3 identifikasi kepadatan jalur satu dan jalur dua

```delphi
procedure TForm_Simulasi.KJAutoTimer
(Sender: TObject);
begin
//identifikasi kepadatan jalur
//jalur-1/
if h1.Brush.Color=clgreen then
if s1.Color=clred then s1:=1;
if s1=1 then if s1.Color=clwhite then begin
j1:=j1+1;
s1:=0;
end;
//jauler-2/
if h2.Brush.Color=clgreen then
if s2.Color=clred then s2:=1;
if s2=1 then if s2.Color=clwhite then begin
j2:=j2+1;
s2:=0;
end;
end;
```

Kode program 4 untuk mengidentifikasi kondisi jalan pada jalur satu, jika man1 (counter) sama dengan 0 maka autoyellow (lampu kuning) aktif, maka man1 sama dengan man1 minus 1, h1 berwarna hijau, m2 berwarna merah, koj1 (kondisi jalur 1) jalan, koj2 (kondisi jalur 2) berhenti.

Kode program 5 untuk menghitung kepadatan jalur, dengan rumus output1 = 60 / string menjadi float adalah wj1 (waktu jalan 1) koj1 (kondisi jalur 1) sama dengan (output1*j1/2), untuk mengkategorikan jumlah kendaraan apakah sangat padat, padat, cukup padat, kurang padat, tidak padat.

Kode program 6 untuk pengaturan manual, jika man1 (counter) sama dengan 0 maka autoyellow (lampu kuning) aktif, maka man1 sama dengan man1 minus 1, h1 berwarna hijau, m2 berwarna merah, koj1 (kondisi jalur 1) jalan, koj2 (kondisi jalur 2) berhenti. Untuk pengaturan jalur dua, maka man2 sama dengan man2 minus 2, h2 berwarna hijau, m1 berwarna merah, koj2 (kondisi jalur 2) jalan, koj1 (kondisi jalur 1) berhenti.

Kode 4 identifikasi kondisi jalan jalur satu

```delphi
procedure TForm_Simulasi.AutoTimer
(Sender: TObject);
begin
//identifikasi kondisi jalur
if man1=0 then begin
autoyellow.Enabled:=true;
TAuto1.Enabled:=false; end else begin
man1:=man1-1;
image8.Visible:=true;
image9.Visible:=false;
h1.Brush.Color:=clgreen;
k1.Brush.Color:=clblack;
h2.Brush.Color:=clblack;
k2.Brush.Color:=clblack;
m2.Brush.Color:=clred;
koj1.Caption:='Jalan';
koj2.Caption:='Berhenti'; end;
end;
```

Kode 5 indikator nilai kepadatan jalur

```delphi
procedure TForm_Simulasi.autoyellowTimer(Sender: TObject);
begin
//indikator nilai kepadatan jalur
output1:=60 / strtofloat(wj1.Text);
j1.Text:=floattostr(output1 * j1/2);
if input1 > 75 then begin
label5.Caption:='Sangat Padat';
persen1:=15 end else if input1 > 60 then begin
label5.Caption:='Padat';
persen1:=input1 - 60; end else if input1 > 45 then begin
label5.Caption:='Cukup Padat';
persen1:=input1 - 45; end else if input1 > 30 then begin
label5.Caption:='Kurang Padat';
persen1:=input1 - 30; end else if input1 = 15 then begin
label5.Caption:='Sedikit Padat';
persen1:=input1 - 15; end else if input1 > 0 then begin
label5.Caption:='Tidak Padat';
persen1:=input1; end;
ttpersen:=(persen1 + persen2)/2;
```

Kode program 7 untuk indikator lampu warna kuning, pada saat lampu hijau ke lampu merah ataupun sebaliknya maka lampu kuning akan menyala.

Kode program 8 untuk melakukan interupsi pada jalur satu, h1 berwarna hijau, m2 berwarna merah berarti lampu hijau untuk jalur satu, lampu lalulintas jalur dua berwarna merah. Untuk interupsi pada jalur dua, h2 berwarna hijau, m1 berwarna merah berarti lampu hijau untuk jalur dua, lampu lalulintas jalur satu berwarna merah.
Kode 6 pengaturan secara manual pada jalur satu

```pascal
procedure TForm_Simulasi.tManual1Timer(Sender: TObject);
begin
if manl=0 then begin
manyellow.Enabled:=true;
tManual.Enabled:=false; end else
begin
manl:=manl-1;
image8.Visible:=true;
image9.Visible:=false;
h1.Brush.Color:=clGreen;
k1.Brush.Color:=clBlack;
m1.Brush.Color:=clBlack;
h2.Brush.Color:=clBlack;
k2.Brush.Color:=clBlack;
m2.Brush.Color:=clRed;
kol.Caption:='Jalan';
kol2.Caption:='Berhenti'; end;
end;
```

Kode 7 indikator lampu kuning

```pascal
procedure TForm_Simulasi.Jalur11Click(Sender: TObject);
begin
nccontroller1.Click;
image8.Visible:=true;
image9.Visible:=false;
h1.Brush.Color:=clgreen;
k1.Brush.Color:=clblack;
m1.Brush.Color:=clblack;
h2.Brush.Color:=clblack;
k2.Brush.Color:=clblack;
m2.Brush.Color:=clred;
kol.Caption:='Jalan';
kol2.Caption:='Berhenti';
end;
```

Kode 8 interupsi pada jalur satu

```pascal
procedure TForm_Simulasi MANYellowTimer(Sender: TObject);
begin
//indikator lampu kuning
image8.Visible:=false;
image9.Visible:=false;
h1.Brush.Color:=clyellow;
k1.Brush.Color:=clblack;
m1.Brush.Color:=clblack;
h2.Brush.Color:=clblack;
k2.Brush.Color:=clyellow;
m2.Brush.Color:=clblack;
tManual.Enabled:=true;
manyellow.Enabled:=false;
end;
```

Pengujian dan Analisa Hasil Pengujian

Skenario pengujian meliputi pengujian perangkat kemajuan terhadap fungsionalitas aplikasi yang dibangun, pengujian proses yang terjadi pada perangkat lunak yang dibangun dengan proses yang terjadi didalam sistem, dan pengujian kelayakan aplikasi dalam sebuah aplikasi yang akan digunakan.

Metode yang digunakan dalam aplikasi pengaturan lampu lalulintas ini adalah pengujian Black-Box. Apabila keluaran proses tidak menghasilkan sesuatu yang diinginkan, maka program aplikasi masih terdapat kesalahan-kesalahan yang harus diperbaiki pada program aplikasi tersebut. Apabila keluaran proses menghasilkan kebutuhan fungsionalnya, maka program aplikasi tersebut benar.

Pengujian Black-Box melakukan pengujian pada program dimulai dari menu login sampai semua menu yang terdapat pada program aplikasi pengaturan lampu lalulintas berdasarkan logika fuzzy menggunakan delphi 7.0.

<table>
<thead>
<tr>
<th>No</th>
<th>Deskripsi Fungsional</th>
<th>Kasus Uji</th>
<th>Hasil Yang Diharapkan</th>
<th>Hasil Uji</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Antarmuka Login</td>
<td>Memasukan password yang sesuai</td>
<td>Menampilkan form simulasi</td>
<td>Sesuai</td>
</tr>
<tr>
<td>2</td>
<td>Antarmuka Simulasi</td>
<td>Memilih set otomatis</td>
<td>Program melakukan pengaturan berdasarkan masukan sensor</td>
<td>Sesuai</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memilih set manual</td>
<td>Program melakukan pengaturan berdasarkan masukan waktu oleh operator</td>
<td>Sesuai</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interupsi</td>
<td>Lampu hijau menyala pada jalur yang di interupsi dan lampu merah menyala pada jalur yang lainnya</td>
<td>Sesuai</td>
</tr>
</tbody>
</table>

Setelah pengujian perangkat lunak telah dilakukan, selanjutnya melakukan analisis dari hasil pengujian perangkat lunak.

Pada antarmuka login, operator di minta untuk memasukan password sebelum masuk ke program pengaturan lampu lalulintas. Password di maksudkan agar aplikasi ini tidak dapat di akses oleh setiap orang demi keamanan.

Bila set otomatis yang di pilih maka operator tidak perlu lagi memasukan berapa lama waktu nyala untuk lampu lalulintas di jalur satu dan jalur dua, karena pengaturan sudah di lakukan berdasarkan kepadatan jalur dari masukan sensor ke program sehingga waktu jalan akan otomatis membagi lama waktu nyala pada jalur satu dan jalur dua untuk menyalakan sesuai dengan kondisi jalan.

Bila operator memilih proses manual, maka operator akan mengisi berapa lama waktu jalan untuk jalur satu dan jalur dua tanpa mempertimbangkan kepadatan jalur.

Proses interupsi di sini di gunakan hanya apabila ada keadaan mendesak seperti permintaan mobil ambulance, atau mobil pemadam kebakaran untuk lewat pada salah satu jalur, jalur yang di interupsi akan menerima masukan lampu hijau dan jalur yang lainnya akan menerima masukan lampu merah sampai interupsi berakhir.

VI. KESIMPULAN DAN SARAN

Kesimpulan
Selama mengimplementasikan simulasi pengaturan lampu lalulintas berdasarkan logika fuzzy menggunakan Delphi 7.0, penulis mengambil kesimpulan sebagai berikut:

1. Simulasi ini dapat digunakan untuk memenuhi tujuan sistem pengaturan lalulintas secara optimal, yaitu dengan melakukan pengaturan berdasarkan panjangnya antrean kendaraan yang dideteksi oleh sensor pada persimpangan jalan.

2. Untuk melayani kebutuhan mendesak seperti pelayanan untuk mobil pemadam kebakaran, ambulance, dan yang lainnya. Pada simulasi ini terdapat fasilitas interupsi yang di gunakan untuk menyela jalur lain dan memberikan lampu hijau pada jalur yang di lewati.

3. Penerapan aplikasi ini adalah dengan kondisi persimpangan jalan yang menggunakan dua buah lampu lalulintas pada empat jalur, yaitu dua jalur dua arah dan dua jalur satu arah dengan peletakan sensor pada jalur dua arah yang menuju lampu lalulintas.

Saran
Beberapa saran di akhir dari laporan penelitian ini antara lain:

1. Proses pendeteksian kendaraan yang dilakukan harus menggunakan beberapa sensor inframerah dan sensor inframerah yang dipergunakan tidak mempunyai kemampuan untuk membedakan antara kendaraan dengan benda lain, sehingga sensor harus dilakukan pada tempat yang tepat.

2. Untuk Kondisi persimpangan jalan pada aplikasi yang penulis buat adalah menggunakan dua lampu lalulintas pada jalur dua arah, untuk kondisi persimpangan jalan yang berbeda, maka di perluakan beberapa penyesuaian pada program tergantung dengan kondisi yang ada.

DAFTAR PUSTAKA

Sudono, Agus, Memainfaatkan Port Paralel Komputer Menggunakan Delphi, Smart Books, Cetakan 1, Oktober 2004.

Pressman, Roger S., "Rekayasa Perangkat Lunak Pendekatan Praktis Buku 2", Andi Jogjakarta

Nur Ani, Dosen Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana.

Achmad Kadur, Dosen Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Mercu Buana.

Jemala Indahdin, Mahasiswa Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Mercu Buana.