Proceedings of
Humboldt Kolleg:
SYNERGY, NETWORKING AND
THE ROLE OF FUNDAMENTAL
RESEARCH DEVELOPMENT
IN SOUTH EAST ASIA
in conjunction with:
THE INTERNATIONAL CONFERENCE
ON NATURAL SCIENCES (ICONS) 2011
Editor-in-Chief:

Hugo Scheer

Members of Editorial Team:

Biswajeet Pradhan,
Tatas H. P. Brotosudarmo,
Eugenius Sadtono,
Bernadetta Kwintiana Ane

Proceedings of the International Conference
on Natural Sciences (ICONS) 2011

09.-11. July 2011, Batu, East Java, Indonesia

Shaker Verlag
Aachen 2013
PC.02 The Effect of Adsorbate Volume and Degree of Swelling on Adsorption of Dyes by Nata de Coco and Nata de Aquo
Mailinda A. H. Margareta, Surjani Wonorahardjo and Hayuni R. Widarti

PC.03 The Application of the Tamarind (Tamarindus Indica Linn.) Extract as A Natural Preservative for the Fresh Black Tilapia (Oreochromis Niloticus Linn.) During Cold Storage
Adolf J. N. Parhusip, Karina N. L. and Mery T. D. Ambarita

PC.04 pH Optimization and Effect of Composition in Cellulose-Carbon Composite to the Adsorption of Cd²⁺ Ion
Amaliya S. Permatasari, Surjani Wonorahardjo, and Hayuni R. Widarti

PC.05 Molecular Distillation Optimization for Palm Carotenoid Recovery
Meta Rivani and Tjahjono Herawan

PC.06 The Concentration Effect of Cd²⁺ Ion and Cr³⁺ Co-Ion on Adsorption Process by Nata de Coco-Carbon Composite
Yenny E. Rosdiana, Surjani Wonorahardjo and Hayuni R. Widarti

PC.07 Laboratory Scale Bioremediation of Hydrocarbon Contaminated Soil by Indigenous Bacterial Consortium
Ade Sumiardi, Wibowo Mangunwardoyo, Dwi Susilansih and Sumihudiyono

TOPIC INDEX

AUTHOR INDEX
THE APPLICATION OF THE TAMARIND (TAMARINDUS INDICA LINN.) EXTRACT AS A NATURAL PRESERVATIVE FOR THE FRESH BLACK TILAPIA (OREOCHROMIS NILOTICUS LINN.) DURING COLD STORAGE

ADOLF J. N. PARHUSIP 1,2 *, KARINA N. L. 2 AND MERY T. D. AMBARITA 3

1 The Graduate Program of Food Technology, Universitas Pelita Harapan, Plaza Semanggi, Kawasan Bismis Grandha, Jl. Jend. Sudirman Kav 50, Jakarta 12930, Indonesia.
2 The Department of Food Technology, Universitas Pelita Harapan, M.H. Thamrin Boulevard, 1100 Lippo Village, Tangerang, Indonesia.
3 Alumnus of the Department of Food Technology, Universitas Pelita Harapan, M.H. Thamrin Boulevard, 1100 Lippo Village, Tangerang, Indonesia.
* adolf.parhusip@uph.edu

ABSTRACT - Tamarind is commonly used as a culinary herb and has been proved to have antimicrobial compounds that can inhibit the growth of pathogenic bacteria. This research aimed to study the potential use of tamarind as a natural preservative for fresh black tilapia. In this research, the selected extracts were obtained from the tamarind flesh which had an inhibition zone about 2.10-14.65 mm against S. aureus, B. cereus, E. aerogenes, P. aeruginosa, S. faecalis and L. monocytogenes. The Minimum Inhibitory Concentration (MIC) used were 3 MIC, 4 MIC, and 5 MIC. The descriptive test has shown that the application of the 5 MIC extract concentration could preserve black tilapia up to five days during cold storage for some parameters, such as the fish flesh, body surface mucus, smell, and texture (based on the microbiological range in fresh fish (SNI)). The test results have shown that the extract of tamarind flesh could inhibit bacterial growth with the effectiveness of 88.73% - 99.64%.

Keywords: Tamarind, Oreochromis niloticus Linn., antimicrobial, pathogenic bacteria

1. INTRODUCTION

As one of the most consumed food products in Indonesia, fish, contain a high composition of protein and water. This causes the fish to be highly perishable by pathogen and decomposing microbes. Sustaining the quality of the fish can be done by keeping them in a storage at a low-temperature and by adding natural preservatives. Tamarind (Tamarindus indica Linn.) is an indigenous plant used as a traditional herb and seasoning that has been proved to have antimicrobial activities and abilities to inhibit pathogenic bacterial growth [7]. The application of the tamarind antimicrobial compounds as food preservatives is likely to be expanded. The tamarind extract can be used as an antimicrobial compound to inhibit the growth of food-decaying bacteria, particularly fish-decaying bacteria of the fresh black tilapia (Oreochromis niloticus Linn.) which has been the main focus of this research.

2. MATERIALS AND METHODS

In this research, the equipments used were as follows: rotary vacuum evaporator, laminar air flow, analytical balance, incubator, autoclave, microscope, vacuum pump, test tube, petri dish, screw test tube, oven, shaker incubator, and refrigerator.

The materials used in this research were the tamarind from the plantations in Surabaya and the black tilapia (Oreochromis niloticus Linn.). The employed microorganisms were S. aureus, B. cereus, E. aerogenes, P. aeruginosa, L. monocytogenes, and S. faecalis, which were obtained from the Central